Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions


  • Julio MOLINA Universitat Politècnica de València, Instituto Agroforestal Mediterráneo (IAM), Camino de Vera 14, 46022 Valencia (ES)
  • Sara GONZÁLEZ-ORENGA Universitat Politècnica de València, Instituto Agroforestal Mediterráneo (IAM), Camino de Vera 14, 46022 Valencia (ES)
  • Oscar VICENTE Universitat Politècnica de València, Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Camino de Vera 14, 46022 Valencia (ES)
  • Monica BOSCAIU Universitat Politècnica de València, Instituto Agroforestal Mediterráneo (IAM), Camino de Vera 14, 46022 Valencia (ES)
  • Josep V. LLINARES Universitat Politècnica de València, Instituto Agroforestal Mediterráneo (IAM), Camino de Vera 14, 46022 Valencia (ES)
  • Francisco ZAMBRANO Hémera Centro de Observación de la Tierra, Escuela de Agronomía, Facultad de Ciencias, Santiago 8580745 (CL)
  • Claudia SANTIBÁÑEZ Universidad Mayor, Escuela de Ingeniería en Medio Ambiente y Sustentabilidad, Facultad de Ciencias, Santiago 8580745 (CL)




oxidative stress, Stipa caudata, water shortage condition


Stipa caudata is a grass native to low rainfall areas in Argentina and Chile, considered an excellent potential candidate for biofuel production or soil restoration programmes. This study aimed at analysing the effects of ammonium sulphate (AMS) and acetylsalicylic acid (ASA) on the productivity and biochemical traits of plants of this species under water scarcity conditions. The experimental work was carried out on plants grown outdoors using a randomised block plot design. Several yield and biochemical parameters related to resistance to water scarcity were analysed in plants treated with AMS or ASA. Plants in the treatments with ASA and AMS had higher total chlorophyll content than the others. Concerning ion content, water-restricted plants treated with AMS had similar values to irrigated plants. Regarding the osmoprotectants and antioxidants, treated plants had increased concentrations of proline and total flavonoids. Under water stress, plants had higher APX activity and there was an A x B interaction for CAT and SOD activity. The results obtained show that the use of ASA and AMS in some crops or in environmental restoration programmes could be a useful tool to cope with future climate scenarios of water scarcity.


Metrics Loading ...


Aebi H (1984). Catalase in vitro. Methods in Enzymology 105:121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Akıncı Ş, and Lösel DM (2012). Plant water-stress response mechanisms. In: Rahman M, Hasegawa H (Eds). Water Stress InTech Press, Rijeka, Croatia, pp 15-42.

Agromet (2018). Chilean climate variables. Retrieved December 30 2021 from https://www.agromet.cl

Apel K, Hirt H (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Reviews in Plant Biology 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Abdellaoui R, Boughalleb F, Chebil Z, Mahmoudi M, Belgacem AO (2017). Physiological, anatomical and antioxidant responses to salinity in the Mediterranean pastoral grass plant Stipa lagascae. Crop Pasture Science 68(9):872-884. https://doi.org/10.1071/CP16365

Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O (2017). Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Frontiers in Plant Science 8. https://doi.org/10.3389/fpls.2017.01438

Awate PD, Gaikwad DK (2014). Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. Journal of Physiology and Biochemistry 10(1):222-229.

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39(1):205-207. https://doi.org/10.1007/BF00018060

Bastiani MO, Roma-Burgos N, Langaro AC, Salas-Perez RA, Rouse CE, Fipke MV, Lamego FP (2021). Ammonium sulfate improves the efficacy of glyphosate on South African lovegrass (Eragrostis plana) under water stress. Weed Science 69:167-176. https://doi.org/10.1017/wsc.2020.97

Beyer WF, Fridovich I (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Annals of Biochemisry 161:559-566. https://doi.org/10.1016/0003-2697(87)90489-1

Blainski A, Lopes GC, De Mello JCP (2013). Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium brasiliense L. Molecules 18(6):6852-6865. https://doi.org/10.3390/molecules18066852

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Annal of Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Connell JP, Mullet JE (1986). Pea chloroplast glutathione reductase: purification and characterisation. Plant Physiology 82(2):351-356. https://doi.org/10.1104/pp.82.2.351

Das K, Roychoudhury A (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Plant Science 2:1-13. https://doi.org/10.3389/fenvs.2014.00053

Farooq M, Wahid A, Kobayashi NSMA, Fujita DB, Basra SMA (2009). Plant drought stress: effects, mechanisms and management. Journal of Sustainable Agricu;ture 153-188. https://doi.org/10.1007/978-90-481-2666-8_12

Farooq A, Bukhari SA, Akram NA, Ashraf M, Wijaya L, Alyemeni MN, Ahmad P (2020). Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants 9:104. https://doi.org/10.3390/plants9010104

Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, ... Vicente O (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6.

Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012). Chemosphere nitrogen fertiliser improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119-1125. https://doi.org/10.1016/j.chemosphere.2012.02.005

Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164:728-736. https://doi.org/10.1016/j.jplph.2005.12.009

Guo B, Liang YC, Zhu Y, G, Zhao FJ (2007). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution 147(3):743-749. https://doi.org/10.1016/j.envpol.2006.09.007

Hassanein RA, Amin AAE, Rashad ESM, Ali H (2015). Effect of thiourea and salicylic acid on antioxidant defense of wheat plants under drought stress. International Journal of ChemTech Research 7(01):346-354.

Hessini K, Hamed KB, Gandour M, Mejri M, Abdelly C, Cruz C (2013). Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium?. Plant Soil 370(1):163-173. https://doi.org/10.1007/s11104-013-1616-1

Hodges DM, Delong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611. https://doi.org/10.1007/s004250050524

Hussain I, Rasheed R, Ashraf MA, Mohsin M, Shah SMA, Rashid DA, Akram M, Nisar J, Riaz M (2020). Foliar applied acetylsalicylic acid induced growth and key biochemical changes in chickpea (Cicer arietinum L.) under drought stress. Dose-Response 18:1-13. https://doi.org/10.1177/1559325820956801

IPCC (2018). Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C°. 1, 5. Retrieved 2021 December 12 from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Citation.pdf

Ismail Mofizur and Hiroshi Hasegawa (2012). Water Stress. InTech, Rijeka Croatia.

Jopia A, Zambrano F, Pérez-Martínez W, Vidal-Páez P, Molina J, Mardones F. de la H (2020). Time-series of vegetation indices (VNIR/SWIR) derived from sentinel-2 (A/B) to assess turgor pressure in kiwifruit. ISPRS International Journal of Geo-Information 9:1-18. https://doi.org/10.3390/ijgi9110641

Kaya C (2021). Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum 172:351-370. https://doi.org/10.1111/ppl.13153

Kareem F, Rihan H, Fuller M (2017). The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. 2017. Agricultural Research & Technology: Open Access Journal 9. https://10.19080/ARTOAJ.2017.09.555768

Kabiri R, Naghizadeh M (2015). Exogenous acetylsalicylic acid stimulates physiological changes to improve growth, yield and yield components of barley under water stress condition. Journal of Plant Physiology and Breeding 5(1):35-45.

Kudlak J, Batistic O, Hashimoto K (2010). Calcium signals: the lead currency of plant information processing. Plant Cell 22:541-563. https://doi.org/10.1105/tpc.109.072686

Masson-Delmotte V, Zhai, P, Pörtner H, Roberts D, Skea, J, Shukla PR, Waterfield T (2018). global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C°. 1, 5. Retrieved 2021 December from https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM_es.pdf

Magdy M, Mansour F, Farouk E (2017) Evaluation of proline functions in saline conditions. Phytochemistry Review 140. https://doi.org/10.1016/j.phytochem.2017.04.016

Molina J, Covarrubias JI (2019). Influence of nitrogen on physiological responses to bicarbonate in a grapevine rootstock. Journal of Soil Science and Plant Nutrition 19:305-312. https://doi.org/10.1007/s42729-019-00030-1

Nazar R, Umar S, Khan NA, Sareer OS (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany 98:84-94. https://doi.org/10.1016/j.sajb.2015.02.005

Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology 22(5):867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Neuberg M, Pavlíková D, Pavlík M, Balík J (2010). The effect of different nitrogen nutrition on proline and asparagine content in plant. Plant Soil Environment 56:305-311. https://doi.org/10.17221/47/2010-PSE

Noctor G, Reichheld J, Foyer CH (2018). ROS-related redox regulation and signaling in plants. In: Seminars in Cell & Developmental Biology 80:3-12. Academic Press. https://doi.org/10.1016/j.semcdb.2017.07.013

Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell & Environment 434-443. https://doi.org/10.1111/j.1365-3040.2010.02253.x

Osakabe, Y, Osakabe K, Shinozaki K, Tran LS (2014). Response of plants to water stress. Frontiers in Plant Science 5:86. https://doi.org/10.3389/fpls.2014.00086

Rodrigues L, Emilaine A, Prado R, Oliveira R, De Ferreira, E (2020). Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 594-606. https://doi.org/10.1007/s10646-020-02208-1

Senaratna T, Touchell D, Bunn E, Dixon K (2000). Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30:157-161. https://doi.org/10.1023/A:1006386800974

Sun Y, Wang C, Chen HYH, Ruan H (2020). Response of plants to water stress: A meta-analysis. Frontiers in Plant Science 11:1-8. https://doi.org/10.3389/fpls.2020.00978

Vargas-Ortiz E, Ramírez-Tobias HM, González-Escobar JL, Gutiérrez-García AK, Bojórquez-Velázquez E, Espitia-Rangel E, Barba de la Rosa AP (2021). Biomass, chlorophyll fluorescence, and osmoregulation traits let differentiation of wild and cultivated Amaranthus under water stress. Journal of Photochemistry and Photobiology B: Biology 220. https://doi.org/10.1016/j.jphotobiol.2021.112210

Walinga I, Van Vark W, Houba VJG, Van der Lee JJ (1989). Soil and plant analysis. Plant. Part 7.

Weimberg R (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum 70:381-388. https://doi.org/10.1111/j.1399-3054.1987.tb02832.x

Yang D, Ni R, Yang S, Pu Y, Qian M, Yang, Y (2021). Functional characterisation of the Stipa purpurea P5CS gene under drought stress conditions. International Journal of Molecular Sciences 22(17):9599. https://doi.org/10.3390/ijms22179599

Zeinali A, Moradi P (2015). The effects of humic acid and ammonium sulfate foliar spraying and their interaction effects on the qualitative and quantitative yield of native garlic (Allium sativum L). Journal of Applied Environmental and Biological Sciences 4:205-211.

Zhang L, Li S, Zhang H, Liang Z (2007). Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. Journal of Agronomy and Crop Science 193(6):387-397. https://doi.org/10.1111/j.1439-037X.2007.00276.x

Zhang T, Yang J, Sun Y, Kang Y, Yang J, Qi Z (2018). Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. Journal of Plant Physiology 226:22-30. https://doi.org/10.1016/j.jplph.2018.04.002

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559.



How to Cite

MOLINA, J., GONZÁLEZ-ORENGA, S., VICENTE, O., BOSCAIU, M., LLINARES, J. V., ZAMBRANO, F., & SANTIBÁÑEZ, C. (2022). Effect of acetylsalicylic acid and ammonium sulphate on productive and physiological parameters in Stipa caudata under water shortage conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12645. https://doi.org/10.15835/nbha50112645



Research Articles
DOI: 10.15835/nbha50112645

Most read articles by the same author(s)

1 2 > >>