Biofortification with copper nanoparticles (Nps Cu) and its effect on the physical and nutraceutical quality of hydroponic melon fruits


  • Manuel FORTIS HERNÁNDEZ National Technological Institute of Mexico-Campus Instituto Tecnologico de Torreon (TecNm-ITT) (MX)
  • Jaime ORTIZ LOPEZ Master of Science in Soils National Technological Institute of Mexico-Campus Instituto Tecnologico de Torreon (TecNm-ITT) (MX)
  • Pablo PRECIADO RANGEL National Technological Institute of Mexico-Campus Instituto Tecnologico de Torreon (TecNm-ITT) (MX)
  • Radames TREJO VALENCIA National Technological Institute of Mexico-Campus Instituto Tecnologico de Torreon (TecNm-ITT) (MX)
  • Erika LAGUNES FORTIZ Autonomous University of Chapingo, Phytotechnics Department (MX)
  • Alfonso ANDRADE-SIFUENTES Doctorate in Sciences in Water and Soils National Technological Institute of Mexico-Campus Instituto Tecnologico de Torreon (TecNm-ITT) (MX)
  • Edgar Omar RUEDA PUENTE University of Sonora, Department of Agriculture and Livestock (MX)



Cucumis melo L, antioxidants, nanoparticles


Currently the use of nanoparticles is having an impact on agricultural production. There is evidence that copper nanoparticles have a strong impact on the growth and development of different crops. Biofortification specifically with (NPs Cu) improves the nutritional quality of food and its consumption has a positive influence on the health of humanity. The objective of this study consisted in evaluating the foliar application of copper nanoparticles (NPs Cu), on the weight of the fruit, nutraceutical quality and concentration of copper in melon fruit pulp. The treatments consisted of five doses of Cu NPs: 0, 1.8, 3.6, 5.4, 7.2 and 9.0 mg L -1 sprinkled foliarly. The variables evaluated were fruit weight, polar and equatorial diameter, firmness, total soluble solids, bioactive compounds and copper content in melon pulp. The results obtained indicated that the foliar application of NPs Cu, improved the physical and nutraceutical quality and the concentration of Cu in melon fruits. The highest weight and the best diameters of the fruit were obtained with the highest concentrations of NPs Cu (7.2 and 9.0 mg L-1). The concentration of 3.6 mg L-1 Cu NPs presented the highest antioxidant capacity with a value of 117,713 mg equiv. Trolox * 100 mg -1 PF, and higher content of phenols with 243.68 mg ac. gallic / 100 g FP, exceeding the concentration of 1.8 mg L -1 by 39% and the control treatment by 48%. The 3.6 and 5.4 mg L-1 treatments obtained the highest amount of flavonoids with values ​​of 149.903 and 148.29 mg QE / 100 g -1 FP, respectively. Regarding the copper concentration in the melon fruit pulp, the 9.0 mg L-1 treatment presented the highest concentration with a value of 5.39 mg kg -1 PS; The results show that, statistically, there is a correlation between the copper nanoparticles and the phytochemical variables in melon fruits. It is concluded that the use of Cu NPs can be an alternative to enrich melon fruits, and could help to solve the copper deficiency in the diet of the population.


Metrics Loading ...


Andrade-Sifuentes A, Fortis-Hernández M, Preciado-Rangel P, Orozco-Vidal JA, Yescas-Coronado P, Rueda-Puente EO (2020). Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomía 10(12):1956.

AOAC International (2005). Official Methods of Analysis. 18th Ed., AOAC International, Gaithersburg, MD, USA, Official Method.

Azam MM, Eissa AHA, Hassan AH (2015). Monitoring of change in cantaloupe fruit quality under pre-cooling and storage treatments. Journal of Food Process and Technology 6(12):1-6.

Bona E, Lingua G, Todeschini V (2016). Effect of bioinoculants on the quality of crops. In: Bioformulations for Sustainable Agriculture, pp 93-124.

Bower J, Holford P, Latché A, Jean-Claude P (2002). Culture conditions and detachment of the fruit influence the effect of ethylene on the climateric respiration of melon. Postharvest Biology and Technology 26:135-146.

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. Food Science 28(1):25-30.

Chandra P, Sharma RK, Arora DS (2020). Antioxidant compounds from microbial sources: A review. Food Research International 129.

Cumplido-Nájera CF, González-Morales S, Ortega-Ortíz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae 245:82-89.

Dimkpa CO, Mclean JE, Latta DE, Manangon EL, Britt D, Johnson W, Boyanov M, ... Anderson A (2012). CuO and ZnO nanoparticles. Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research 14:1-15. https://doi. org/10.1007/s11051-012-1125-9

Elemike EE, Nwankwo HU, Onwudiwe DC (2019). Synthesis and comparative study on the anti-corrosion potentials of some Schiff base compounds bearing similar backbone. Journal of Molecular Liquids 276:233-242.

FAOSTAT (2020). Food and Agriculture Organization of the United Nations Statistics.

Fundo JF, Miller FA, Garcia E (2018). Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. Food Measure 12:292-300.

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, ... Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254.

Garcia-Mendoza V, Cano-Ríos P, Reyes-Carrillo JL (2019). Harper-type melon hybrids have higher quality and longer post-harvest life than commercial hybrids. Revista Chapingo. Serie Horticultura 25(3):185-197.

Gaschler MM, Stockwell BR (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications 482:419-425.

Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, … Mukherjee A (2016). Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutation Research. Genetic Toxicology and Environmental Mutagenesis 807:25-32.

Gohari G, Mohammadi A, Akbari A, Panahirad S, Reza DM, Fotopoulos V, Kimura S (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10:912.

Hernández-Hernández H, González-Morales S, Benavides-Mendoza A, Ortega-Ortiz H, Cadenas-Pliego G, Juárez-Maldonado A (2018). Effects of chitosan-PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules 23:178.

Huang C, Verrillo F, Renzone G (2011). Response to biotic and oxidative stress in Arabidopsis thaliana: Analysis of variably phosphorylated proteins. Journal of Proteomics 74:1934-1949.

Juárez-Maldonado A, Ortega-Ortíz H, Cadenas-Pliego G, Aldés-Reyna J, Pinedo-Espinoza JM, López-Palestina CU, … Hernández-Fuentes AD (2018). Foliar application of Cu nanoparticles modified the content of bioactive compounds in Moringa oleifera Lam. Agronomy 8(167):1-13.

Juárez-Maldonado AO-O-L-P-M (2016). Las nanopartículas de Cu absorbidas en hidrogeles de quitosano alteran positivamente las características morfológicas, de producción y de calidad del tomate. Revista de Bótanica Aplicada y Calidad de Alimentos 89:183-189.

Kalal PR, Jajoo A (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry 160:341-351.

Lester G (1997). Melon (Cucumis melo L.) fruit nutritional quality and health functionality. HorTechnology 7(3):222-228.

López-Mora Y, Gutiérrez-Arenas DA, Cuca-García JM (2018). Síntesis de nanopartículas y su aplicación en la nutrición animal. Agroproductividad 11(6):85-90.

López-Vargas E, Ortega-Ortiz H, Cadenas-Pliego G, Alba-Romenus K, Cabrera-Fuente M, Benavides-Mendoza A, … Juárez-Maldonado A (2018). La aplicación foliar de nanopartículas de cobre aumenta la calidad de la fruta y el contenido de compuestos bioactivos en tomates. Ciencias Aplicadas 8(7):10-20.

Maietti A, Tedeschi P, Stagno C, Bordiga M, Travaglia F, Locatelli M, Arlorio M, Brandolini V (2012). Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability. Journal of Food Science 77(6.):646-652.

Martínez-González ME, Balois-Morales R, Alia-Tejacal R, Cortes-Cruz MA, Palomino-Hermosillo YA, López-Guzmán GG (2017). Postcosecha de frutos: maduración, ablandamiento y control transcripcional. Revista Mexicana de Ciencias Agrícolas 19:4075-4087.

Mittler R (2017). ROS are good. Trends in Plant Science 22:11-19.

Moretti M, Cossignani L, Messina F, Dominici L, Villarini M, Curini M, Marcotullio MCJ (2013). Antigenotoxic effect, composition and antioxidant activity of Dendrobium speciosum. Food Chemistry 140(84):660-665.

Mosavat N, Golkar P, Yousefifard M, Javed R (2019). Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress. Biotechnology and Applied Biochemistry 66:316-322.

Olejnik M, Krajnik B, Kowalska D, Twardowska M, Czechowski N, Hofmann E, Mackowski S (2013). Imaging of fluorescence enhancement in photosynthetic complexes coupled to silver nanowires. Applied Physics Letters 102:083703.

Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J-H, Levine M (2003). La vitamina C como antioxidante: evaluación de su papel en la prevención de enfermedades. Revista del Colegio Americano de Nutrición 22(1):18-35.

Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019). Respuestas de plantas de tomate bajo estrés salino a aplicación foliar de nanopartículas de cobre. Plantas 8(6):151.

Preciado-Rangel P, Rueda-Puente E, Valdez-Aguilar L, Reyes-Pérez J, Gallegos-Robles M, Murillo Amador B (2021). Conductividad eléctrica de la solución nutritiva y su efecto sobre los compuestos bioactivos y el rendimiento del pimiento (Capsicum annuum L.). Agroecosistemas Tropicales y Subtropicales 24(2).

Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018). Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience 8(1):36-42.

Ramírez-Barrón SN, Sánchez-Valdés S, Puente-Urbina BA, Martínez-Montemayor S, Esparza-González SC, Betancourt-Galindo R (2019). Preparación de un adhesivo sensible a la presión (PSA) con la incorporación de nanopartículas de ZnO. Estudio de sus Propiedades Fisicoquímicas y Antimicrobianas. Revista Mexicana de Ingeniería Biomédica 40(1):1-10.

Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015). Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (Eds). Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. Springer International: Cham, Switzerland, pp 1-17.

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021). Zinc oxide nanoparticles and their effect on melon performance and quality. Revista Mexicana de Ciencias Agrícolas 12(5):791-803.

Robledo-Torres V, Hernández-Dávila J, Benavides-Mendoza A, Ramírez-Gomina F, Vázquez Badillo M, Bacópulos Téllez E (2005).Modificación del contenido mineral en melón en respuesta al genotipo y uso de acolchado plástico de colores. AGROFAZ 5(1):709-716.

Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Biswas P (2015). Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules 75(1):346-353.

SIAP (2019). Servicio de Información Agroalimentaria y Pesquera. Anuario Estadístico de la Producción Agrícola.

Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Methods in Enzymology 299:152-178.

Somasundaran P, Fang X, Ponnurangam S, Li B (2010). Nanoparticles: Characteristics, mechanisms and modulation of biotoxicity. KONA Powder and Particle Journal 28(1):38-49.

Tucuch-Haas CJ, Alcántar-González G, Larqué-Saavedra A (2015). Effect of salicylic acid on root growth and total biomass of wheat seedlings. Terra Latinoamericana 33(1):63-68.

Wang M, Liu X, Hu J, Li J, Huang J (2015). El óxido nano-férrico promueve el crecimiento de la sandía. Revista de Biomateriales y Nanobiotecnología 6:160-167. / jbnb.2015.63016 .

White PJ (2009). Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182:49-84.



How to Cite

FORTIS HERNÁNDEZ , M. ., ORTIZ LOPEZ, J. ., PRECIADO RANGEL , P. ., TREJO VALENCIA, R. ., LAGUNES FORTIZ, E. ., ANDRADE-SIFUENTES, A. ., & RUEDA PUENTE , E. O. (2022). Biofortification with copper nanoparticles (Nps Cu) and its effect on the physical and nutraceutical quality of hydroponic melon fruits. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12568.



Research Articles
DOI: 10.15835/nbha50112568

Most read articles by the same author(s)